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Chetayev's effective method [1] for constructing Lyapunov functions in the form of a set of first integrals of the equations of 
perturbed motion has been widely used since the 1950s in Russia. In the 1980s the energy--Casimir method [2] was developed 
in the U.S.&. as well as the energy-momentum method [3], employed for Hamiltonian systems. A comparison of these methods 
for systems with a finite number of degrees of freedom has shown that the energy-Casimir method is a more complicated version 
of Chetayev's method, while the energy-momentum method is essentially the Routh-Lyapunov method [4, 5], stated in modem 
geometrical language. Some examples are considered. 

1. Suppose that, for the equations of perturbed motion 

Xi =Xi(Xl ..... Xn) (i= I ..... n) (i.i) 

some independent fvrst integrals are known 

V~. (x I ..... x n ) = const, 12 s = 0 (s = 1 ..... m < n) (1.2) 

where X/(x) and V~(X ) are analytic functions, and X/(0) = Vs(0) = 0. 
Using Chetayev's method the Lyapunov function is constructed in the form [1] 

k 
V(x)= ~, X,.V~(x)+ ~, ~trV2(x), O~k<-m (1.3) 

s=l r=l 

where 2% are constants (~.1 = 1), chosen so that the sum I/(1) of the terms linear inxi on the right-hand 
side of (1.3) is identically zero. The remaining undetermined constants ~.s, and also the constants la, 
are chosen in such a 'way that the quadratic form 1A2) on the right-hand side of (1.3), which takes form 

V ( x )  -- V(2)(x)-I  - V , ( x )  (1.4) 

where the function Px(X) has an order of smallness higher than 2, is sign-definite. Then, in the region 
of values ofxi that are fairly small in absolute value, the function Vwill also be sign-definite, and besides 
1:1 -- 0, and by Lyapunov's theorem on stability, the unperturbed motion x = 0 will be stable. 

The sufficient conditions for stability obtained in this way turn out, in a number of cases, to be identical 
(apart from the equality sign) with the necessary conditions. It is interesting that to obtain these 
conditions it is sometimes sufficient to use only some of the known first integrals [6]. 

Note. 1. It may turn out that the function 1/(2) is only a sign-constant function, the function 1/(3) -= 0, 
which 1/(2) + 1/(43 is a sign-definite function. 

2. Chetayev's method can also be used in the case when I)1 ~< 0; this case arises, in particular, when 
dissipative forces act on the system. 

3. Chetayev's method is closely related [7] to the Routh-Lyapunov theorem [5]. It was proved in [8] 
that for fairly general assumptions, the stability conditions obtained using Chetayev's method are identical 
with the conditions obtained using the Routh-Lyapunov theorem. 

Example 1. We will c~nsider the problem of the stability of the rotation of a Lagrange top around the vertical, 
on the basis of the solution of which Chetayev [1] proposed his method in which the Euler-Poisson equations are 
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written in t~. ~ (i = 1, 2, 3) variables, where t~ are the projections of the angular velocity and "~ are the cosines 
of the angles which the principal axes of inertia make with the vertical. For variety and for comparison with 
Example 2 we will use the variables m~ ffi Yi~ and ~ (i = 1, 2; 3), Ji > 0 (J1 ---- "/2). The known first integrals of the 
Euler-Poisson equations 

1 
H(m,?)=--m.to+Mgl)' 3 =const ,  m . ~  =const ,  ?2  =1,  m 3 = m  =const 

2 

for the solutions ml = m2 = 0, m 3 = m, )'1 = )'2 = 0, V3 = 1 take the following form in perturbed motion 

VI = 2 ( H - m  2 / (2J3) -Mgl )=cons t ,  V 2 = ( m . ? - m ) = c o n s t  

V3 = ?2 _ 1 = 0, V 4 = m 3 - m = const 

Assuming m3 = m + x, T3 = 1 + y for the perturbed motion and retaining the notation for the remaining variables, 
we construct the Lyapunov function of the form (1.3) 

V=VI+2XV2_(MgI+Ttm>~_2(7~+m )v4 + J3-J! V42=~l (m2 +m 2 +x2>+ 
J3 ) JI J3 

+ 2~.(ml)' 1 +m2)'2 +xy)_(Mgl+~n)( ) '2  +),2 + y 2 )  (1.5) 

which is the sum of three similar quadratic forms of two variables each. For these to be positive defLrfite it is necessary 
and sufficient to choose ~, so that the following inequality is satisfied 

~'2 + l m x + l  M g / < 0  (1.6) 
Ji Ji 

The latter inequality is possible if the polynomial has two different real roots, i.e. if 

m 2 > 4J  I Mgl (1.7) 

Inequality (1.7) is the sufficient condition for the unperturbed motion to be stable with respect to the variables 
m ,  ~ (i = 1, 2, 3). But this motion is always stable vdth respect to m3 in view of the existence of the integral 
m3 = const, and it will also be stable with respect to )'3 if it is stable with respect to 3~ (i = 1, 2). Hence, instead of 
(1.5) we can consider the function V = V1 + 2~V2, assuming in it that m3 = m and replacing )', using the integral 
V3 = 0, i.e. 

= l -  ) -  ,A()', 

Then, the quadratic part of the function 

V = V 1 +2•V 2 -- ~1 .(m 2 +m2)+2~,(ml)'l + m2"/2)- (Mg/+),m)[)' 2 +)'2 + 1~()'14 +)'2 4 ) + ...] (1.8) 

will be positive-definite in mi, ~ (i = 1, 2) for condition (1.7). 
In the limiting case 

m 2 = 4J1Mg I (1.9) 

when X = -m/(211), the function (1.8), taking the form 

) ' ,  )5 + 

is positive-definite, which proves the sufficiency of condition (1.9) for the stability of the vertical rotation of a 
Lagrange top [1]. 

The instability of the rotation with respect to mr, ~ (i = 1, 2) when 

m 2 < 4JiMg I (1.10) 

is proved by considering the function W = mff2 - m2)'l and its derivative with respect to time 
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W = Mg/(~( 2 +V2)-~l(ral'Yl+m2"12)+~l(m 2 +m2)[1-~2(,/2 +-/2)-I/8(V ~ +V4)+...] 

in view of the equations of motion with m3 = m, which satisfy all the conditions of Chetayev's theorem on instability 
[I]. 

2. The algorithm for investigating the stability of the energy-Casimir method consists of the following 
steps [2]. 

(A) Suppose that in the phase space P of the variables x e R n the equations of motion of the form 
(1.1) have a first integralH(x) = const, usually representing the total energy. In many cases P is a Poisson 
space, i.e. a linear space which allows the Poisson brackets operation { ,  } f o r  real functions in P. 
Equations (1.1) can then be expressed in Hamiltonian form ~" = {F, H}, where H(x) is the Hamiltonian 
and F is the derivative of the function F(x) with respect to time. 

(B) For Eqs (1.1) one finds a sufficiently large family of constant motions, i.e. a collection C(x) such 
that dC(x)/dt = 0 for any smooth solution of Eqs (1.1). A good way to do this is to use the Hamiltonian 
formalism to find the Casimir functions, i.e. the functions C(x) which Poisson-commute with any function 
G defined in the phase space of the Hamiltonian system: {C, G} = 0. Additional functions related to 
the symmetries of this Hamiltonian can also be found. 

(C) Suppose xe is a point of equilibrium of system (1.1), i.e. X(xe) = 0, the stability of which is of 
interest. We find all the Casimir functions C with properties such that the function Hc = H + C has a 
critical point at x~ 

8H,.(x e) = 0 (2.1) 

(D) Calculation of the second variation 82Hc(x~) and the requirement that it should be sign-definite 
for a certain Casim~r function which satisfies step (C) leads to the conclusion that the solutionxe is stable 
by Lyapunov's theorem on stability by virtue of the conservation of Hc. 

A comparison of Chetayev's method with the energy--Casimir method shows that the latter is a 
more complicated version of the first. In fact, in the energy--Casimir method the function V = 
H~(x) - Hc(xe), i.e. the function constructed from the constant motions, the first variation of which 
8H~ = 0, while 82H~ is sign-definite, plays the role of the Lyapunov function. But whereas in 
Chetayev's method the equality ~i) = 0 serves to define the constants ~,, in the energy-Casimir 
method Eq. (2.1) serves to define the values of the Casimir functions forx = xe, from which one can 
construct the Casimir functions themselves, and this problem is obviously more complex than determining 
7q. Correspondingly, it is more difficult to establish the conditions for 82H~ to be sign-definite than 
for V ~. 

The area of apptication of the energy--Casimir method is much narrower, since it only applies to 
Hamiltonian systems for which Casimir functions exist. In a number of important examples the Casimir 
functions cannot be obtained and may not even exist [3]. 

Example 2. We will present the solution [2] of the problem of the stability of a Lagrange top using the 
energy--Casimir method. 

The Euler-Poisson equations are Hamiltonian with Hamiitonian function H(m, 7) = 1/2m • to + Mg/T3 in a 
Lie-Poisson structure R 3 x R 3 with Poisson bracket 

{F,G}(m,~/) = -m(VmF x V.tG) - V(VmF x V.tG + V.tF x VmG) (2.2) 

For any smooth function ~ the quantity C(m, 30 = ~(m.  3', I ~' I 2) which is conserved is the Casimir function 
in the Poisson structure (2.2). 

The first variation of the function Hc = H + ~(m.  ~,, 1 3' 12) + ~b(m3), where ~b(m3) is a smooth function, is 

8H c =(to+Fl~y).Sm+(Mglx+~m+ 2~"y).~Yy+g#'Sm 3 

The dot and the prime denote differentiation with respect to the first and second arguments of the function 
O(m. ~, I ~, I 2), respe4:tively. 

From (2.1) for the solution me --- (0, 0, m), 3'e = (0, 0, 1) we obtain the equations 

t%+~(m,1)+~b'=0, Mgl+dP(m,l)m+2ap'(m,l)=O, (t%=mlJ3) 

whence we obtain the conditions (correcting the printing errors in (3.202) [2]) 
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*(re,l) = -  (j3"m--- +*'(m)]') 2*'(re,l) = (J3"~-+~'(m))ra-Mgl) (2.3) 

which connect ~, ¢p and the equilibrium me, ~/e. 
Using the notation 

a=~p"(m), b=4~'(m,1), c=~(m,l), d=2~'(m,l) (2.4) 

the second variation can be represented in the form of the sum of three quadratic forms of two variations each 

a2Hc = 71 (am2 + ~a~ ) + 2* (m, l ) (~n l~  I + ~'n2~/2 ) + 20'(m, l)(a~t 12 + ~t~ ) + 

+(4+a+clara, +2(*(m,l)+2mc+d)amaa~13 +(2*'(m,l)+b+m2c+2md)~t~y] (2.5) 
~,S3 ) 

which will be positive-definite if and only if 

1 2 ~'(m,l)-~2(m,1) > 0, m + a + c > 0  
Jl J3 

(2.6) 

The last two inequalities will always be satisfied if we choose the numbers (2.4) appropriately, while, taking (2.3) 
into account, the first takes the form (correcting the printing error in (3.2, D5) [2]) 

1/Jl(me - Mg/) - e 2 > 0 (2.7) 

where e = m/J 3 + ¢~'(m ) can have any value by appropriate choice of ~'(m ). Condition (1.7) is necessary and sufficient 
to satisfy condition (2.7). 

Comparing the quadratic form (1.5) and condition (1.6) for it to be positive-definite with a2Hc and conditions 
(2.6), we can see that the latter is more complex than the first. 

3. The energy-momentum method [3] is closely related to the method of reduction of simplectic 
manifolds of dynamic systems with symmetries. 

Consider a dynamic system with Hamiltonian function H(q, p).  Suppose P is a given phase space of 
the system. We will assume that a symmetry group G of canonical transformations of P into itself exists, 
which depends on several parameters. The group G defines several first integrals which form a vector- 
valued conserved quantity J(q, p) called the mapping of the momentum. 

A set of all points of the phase space P is considered in which J(q, p) has a given value g. Such 
compatible manifolds of the level of integrals in phase space will be invariant manifolds of the phase 
flux on which a subgroup of the symmetry group acts, the invariant manifolds remaining in place. The 
factor-manifold of the invariant manifold with respect to this subgroup is called the reduced phase space 

The reduced phase space Prt inherits the simplectic structure of the initial space P, so that Prt can be 
regarded as a new phase space. The dynamic trajectories of the Hamiltonian H in P define the 
corresponding trajectories in the reduced space Pw This new dynamical system is called a reduced system. 
Fixed points of the reduced system in P~t are called relative equilibria (or, more correctly, stationary 
rotations) of the initial system. In general, the bigger the symmetry group G the richer the supply of 
relative equilibria. 

The relative equilibria qe, Pe are represented by stationary points of the augmented Hamiltonian 

H~(q, p) = H(q, p) - ~.J(q, p) (3.1) 

defined by the equation 

~H~(q, p) = 0 

where ~ can be regarded as a Lagrange multiplier. 

(3.2) 
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To establish the stability of the relative equilibria qe, Pc, we calculate the second variation 52H~ 
and we calculate the conditions for it to be sign-definite, which are also the sufficient conditions for 
stability. 

When calculating the second variation of the variable Hamiltonian it is suggested that only those 
variations of q anti p should be used which satisfy the linearized constraint equations J = const, 
i.e. (&/, 5p) e ker[DJ(qe, Pc)], and should not lie in symmetry directions. They define the space v of 
permissible variations. It has also been shown that if the space v can be split into two specially chosen 
subspaces vrn and vBn, the matrix (52H~) is block-diagonalized, i.e. 8/-/~ and the simplectie structure 
can be reduced to normal form simultaneously [3]. 

Obviously, from the mathematical point of view Eq. (3.2) denotes finding the extremum of the function 
H(q, p) for a given value of the integrals J(q, p) = V,, while the condition for 82H~ to be sign-definite 
is that the extremmn will be a minimum or a maximum. Consequently, the energy-momentum method 
is essentially the Routh-Lyapunov method stated in modern geometrical language. 

This research was carried out with financial support from the Russian Foundation for Basic Research 
(93-013-16242) and the International Science Foundation (MAK-300). 
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